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We calculate the energies of  the 2X + and 2/-1 states of the HF + system by the ab initio restricted 
Hartree-Fock method at a number of real and complex values of the internuclear separation. The 
energies of  the associated spin-orbit states are calculated via a semiempirical scheme. The complex 
intersection point of these energy curves, an integral component of a semiclassical theory of electronic 
transitions, is determined by the ab initio calculations. The intersection point is also determined, for 
comparative purposes, by other methods of analytic continuation, i.e., Gaussian and rational-fraction 
fits to the real-valued energy calculations. Semiclassical dynamical calculations of  the cross section for 
the process F(2P3/2)+ H + ~ F(2P1/2)+ H + using the various intersection points yield differences up 
to 20%. 

Key words: Energy surfaces in the complex plane - HF + - Semiclassical collision theory - Spin- 
orbit interaction 

1. Introduction 

Recent semiclassical calculations involving complex-valued classical tra- 
jectories have been carried out for electronic transitions in the H + +H2 [1], 
H + + D  2 [2-~4],  X W H  2 (X-ha logen)  [5, 6], F + H  + [7] and F + X e  [7] collision 
systems. The calculations on F + H + and F + Xe are based on the Stueckelberg [8] 
model of electronic transitions, and those on the triatomic systems employ a semi- 
classical theory [9, 10] which is essentially a generalization of the Stueckelberg 
model to systems involving internal as well as translational nuclear degrees of 
freedom. Within this framework the internal nuclear degrees of freedom have 
been treated both semiclassically [1-5] and quantum mechanically [612 In the 
latter case, where only the translational degree of freedom is treated semiclassi- 
cally, the problem is reduced to the Stueckelberg model where the transitions are 
between vibronic states. In all these calculations, a two-state approximation is 
imposed, and we consider pairs of adiabatic potential energy surfaces (or curves) 
which do not intersect for real values of nuclear coordinates. If these surfaces are 
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analytically continued into the complex plane, intersection points are found. For 
a two-state problem, the adiabatic surfaces are found as eigenvalues of a two-by- 
two matrix and can be expressed as A_+ x/~, where A and B are single-valued 
functions of the nuclear coordinates. Hence, one can consider the potential as a 
single analytic function in complex space having two Riemann sheets correspond- 
ing to the two branches of the square root function. The intersections of the 
adiabatic surfaces are equivalent to the branch points of this analytic potential 
energy function [11-15]. Quantum transitions are effected by complex-valued 
classical trajectories propagating on the surfaces and switching surfaces continu- 
ously (i.e., with no discontinuities in any component of the nuclear position or 
momenta) at the branch points. The local probability of such a transition is 
exp(-2ImqS/h), where 4) is the action accumulated in propagating around the 
branch point. Hence, the transition probability is strongly dependent Upon the 
position of the branch points and the value of the potential in their neighborhood. 

The accuracy of these dynamical calculations depends upon the accuracy of 
the analytic continuation of the surfaces to their intersection points. Therefore, 
we have initiated studies of various methods of analytic continuation. The most 
rigorous method involves the ab initio calculation of the potentials at complex 
values of the nuclear coordinates. For the H + [14] and FH2 [15] systems we have 
carried out ab initio LCAO-MO calculations in complex nuclear coordinate space 
to locate some of the intersection points between various surfaces. The classical 
dynamical calculations on these triatomic systems involve the solution of the 
coupled classical equations of motion. The propagation to the complex inter- 
section point requires imaginary steps, and since the nuclear degrees of freedom 
are coupled, both the translational and internal nuclear coordinates become com- 
plex. Each of these yields a complex contribution to the phase, and it is difficult 
to isolate specific effects of any inaccuracies in the analytic continuation of the 
potential surfaces. However, for a diatomic system there is a single nuclear co- 
ordinate, and the effect of any inaccuracy in the analytic continuation will be 
apparent. Hence in the present work we focus on the analytic continuation of the 
potential energy curves in a diatomic system, namely HF +. 

There have been recent quantum mechanical [16] and semiclassical [7] studies 
of the process 

F(2p3/2) -k H + - ,  F(ZP1/2) "-~ H +0 (1) 

which involves a transition from the ground to the first excited spin-orbit state of 
the fluorine atom. Both studies used the same potential energy curves, obtained 
from near-Hartree-Fock limit calculations (without spin-orbit interaction) by 
Julienne, Krauss and Wahl [17]. The ground state (ZlI)  potential curve has a 
minimum of -0.129 hartree at an internuclear separation of r = 1.8 bohr, and the 
first excited state (22;+) curve has a minimum of -0.012 hartree at r = 2.25 bohr 
and a maximum of 0.0027 hartree at 4.0 bohr (the energies are related to separated 
F + H+). Although the curves do not intersect on the real axis, they have a com- 
mon asymptote. When the spin-orbit interaction is considered, the curves are split 
asymptotically by 0.00184 hartree, the energy separation between the 2P3/2 and 

�9 zP~/2 states of the fluorine atom. 



zZ+ and z//States of HF + 191 

The semiclassicat studies of  Preston, Sloane and Miller [7] involve d the analy- 
tic continuation of  the potential curves to their intersection points in the complex 
nuclear coordinate plane. To find these points, they fit the difference between the 
2Hand  22;+ curves on the real axis to a Gaussian form which was then analytically 
continued. Although the semiclassical results are in fairly good agreement wi th  
the quantum results, there are Small discrepancies which might be reduced through 
a more accurate analytic continuation of  the curves. 

It is the purpose of this paper to investigate various methods of analytic con- 
tinuation of  the potential curves of  the HF  + system. In Section 2 we describe the 
results of  the ab initio restricted Hartree-Fock calculations of  these curves for 
both real and complex values of  r. Including spin-orbit interaction as a perturba- 
tion in the manner of  Julienne et al. [17], we then locate a complex intersection 
point, which represents the most accurate intersection point of  the spin-orbit 
states within the framework of the restricted Hartree-Fock approximation. In 
Section 3 we locate complex intersection points by various techniques of curve- 
fitting to the ab initio results. These techniques include rational fractions and the 
Gaussian form used by Preston et al, [7]. The results of these techniques of  analytic 
continuation are discussed and compared with respect to their possible influence 
on dynamical calculations. 

2. Ab initio Calculations 

The diatomic molecular ion radical H F  + can be considered as a fluorine atom 
interacting with a proton. In the ground state the 7c molecular orbitals are partially 
filled, resulting in 2H symmetry, and the first excited state zX + has a single occupied 
o molecular orbital. Since these states are of  different symmetries, they do not 
interact under the nonrelativistic Hamiltonian. As mentioned in the Introduction, 
they have a common asymptotic energy at infinite H + - F  separation. However, 
when spin-orbit interaction is included, the 2H and 22;+ states do mix, resulting 
in an asymptotic splitting of 2 = 0.00184 hartree. An ab initio calculation of  the 
spin-orbit interaction energy is extremely difficult and has only been attempted 
for a small number of  molecular systems [18-21]. However, semiempirical esti- 
mates of  the spin-orbit interaction based on the atomic term values are often 
reasonably accurate 1. In this (perturbation) scheme the off-diagonal electronic 

matrix element connecting the two interacting states is a constant equal to 
, ,v /22/3.  The resulting two-by-two Hamiltonian matrix is given as [7, 17] 

+2/3 
- ~  - x/~2/3 Vs ) "  (2) 

where V~ and V n are the energies of  the2Z + and Z/if states (in the absence of  
spin-orbit interaction). Diagonalizing H we obtain the two energies 

E+_ = { V~ + V n + 2/3 + [( V n - V z + 2/3) 2 + 822/9] 1/2 }/2, (3) 

1 The dominant term in the spin-orbit Hamiltonian is the one-center l.s interaction (atomic 
value). Two-center terms represent enhanced shielding and tend to slightly reduce the magnitude of 
the interaction. 
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Fig. 1. A b  initio potential curves for the H F  + system. The solid lines represent the present calculation, 
and the solid circles denote the results of  Julienne et al. [17]. The curves are shown relative to their 
asymptotic degenerate value, which differs for the two calculations. In the insert we depict the difference 
A V=  V~-  V n versus internuclear separation. Again, the solid curve represents our  results, and the 

dots the results of  Ref. 17 

where E _ ( E + )  is the new ground (first excited) state energy. The energy difference 
is simply 

AE(r)  = [( Vn(r ) - V~(r) + 2/3) 2 + 822/93 a/2. (4) 

For  nonzero values of  2, there are no real-valued solutions to AE(r) = 0, and 
the potentials do not intersect. However, if the potentials are analytically con- 
tinued to complex values of  r, one can, ~t least in principle, find a value r = rc for 
which A E =  O. r c is then a complex intersection point of the surfaces i.e., a branch 
point of  the potential function. 

We have performed generalized restricted Hartree-Fock (GRHF)  calcula- 
tions of  V~ and V n at several real and complex values of  r. E+ and E_ were found 
through Eq.(3) and are called G R H F + S O  energies. The G R H F  calculations 
employed the method of Chang, Davidson and Vincow [22] as modified and 
programmed by Iwata and Morokuma [23]. Further modifications of  Iwata and 
Morokuma's  program were made to permit the calculation of electronic energies 
for molecules at complex nuclear geometries 2. 

A contracted Gaussian-type-orbital (GTO) basis set was used for all o f  the 
calculations. This basis set consisted of  ten s and six p functions on the fluorine 
atom, contracted to five s and three sets o f p  orbitals, and five s functions for the 
hydrogen atom contracted to three s functions. The exponents and coefficients 
for the seventeen contracted functions are those of  Dunning [24]. 

2 The techniques involved in complex-valued ab initio MO calculations are discussed in Refs. 11, 
14 and 15. 
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The 2~+ and 2/][ GRHF potential curves (V z and Vn) are represented for 
real values of r by the curve in Fig. 13 along with the results of Julienne, Krauss 
and Wahl [171 which are denoted by the solid circles. The latter employed a large 
Slater-type-orbital (STO) basis which resulted in a lower energy for separated 
atoms (by 0.004627 hartree) and stronger bond energies for both electronic states. 
In fact, in our calculation the minimum in V~ is higher in energy than the separated 
atoms. However, the energy difference A V between these states is nearly identical 
for the two calculations, as shown in the insert in Fig. 1. Since the location of the 
intersection point in the two-by-two GRHF + SO secular equation depends only 
upon A V and 2, the larger differences between the two calculations are not ex- 
pected to be important in locating the complex intersection points. However, 
these differences will be reflected in the value of the energies in the neighborhood 
of the intersection points. 

Rational-fraction techniques [12, 13, 25] were used to facilitate the ab initio 
search for the intersection points. A rational-fraction constructed solely from 
real-valued data of six to eight figure accuracy is expected to represent the energy 
difference to six figures when analytically continued no further than Imr= 0.5 
bohr [ 13]. Since Preston et al. [7] estimated the complex intersection point closest 
to the real axis to have an imaginary part greater than 2.5 bohr, we initially carried 
out complex-valued GRHF + SO calculations at five different complex values of 
r *. The values of (AE(r)) 2 for these five points along with the fifteen real-valued 
GRHF + SO calculations in the range r=  1 to 10 bohr were fit to a rational-frac- 
tion s. [The rational-fraction must reproduce the branch-point structure implicit 
in the ab initio potential energy function, which is exhibited by a square root func- 
tion (see Eq.(4)). This "square root character" was incorporated into the rational- 
fraction by squaring the input values, i.e. (AE(r)) 2, and then taking the square root 
of the rational fraction.] The first estimate of the intersection point was obtained 
by setting the rational-fraction to zero and solving for a complex root re1. A com- 
plex-valued GRHF + SO calculation was then performed at that point, and the 
resulting (AE(r)) z was included in the data for a second rational-fraction 5. This 
new rational-fraction was used to obtain a second estimate rc2, and this iterative 
procedure was continued until [AE(rc4)] < 10-5 in the GRHF + SO calculations, 
where re4 is the intersection point rc = 7.49426 + 3.00887i bohr. 

3 Actual  calculations were carried out  at r = 1.0, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 
3.50, 3.75, 4.00, 4.25, 4.50, 4.75, 5.00, 5.25, 5.50, 6.00, 6.50, 7.00, 7.50, 8.00, 8.50, 9.00, 9.50, 10.0 and 
oo bohr, and the results are available upon request to one of the authors  (KM). 

4 Calculations were initially carried out  for r = 5 + 0 . 3 i ,  7.0+0.3i ,  7 .0+ 1.0i, 7 .0+2.0i ,  8 .0§ 
bohr. Later the potentials were evaluated at 4.39273 + 2.45435i, 7.5974 + 3.09301i, 7.50333 + 2.9919i, 
and 7.49476+cd.00887i bohr, were c~ =0,  �88 1 3 3, ~, 1. 

5 In previous work (see Ref. 14) only AE(rcl ) was included in the input data for the next rational- 
fraction. However, the ab initio energies (and energy differences) are real functions of  complex r and 
thus satisfy the Schwarz Reflection Principle (see Ref. [26]. A rational-fraction constructed from real 
input is a real function of the complex variable r, but  when complex-valued input data  are used, this 
is no longer the case. However, using both AE(rcl) and AE(r*I) as input creates localized reflection sym- 
metry in the region near re1- This increases the range of convergence of the analytically continued 
rational-fraction to larger values of  Imr. 
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3. Curvefitting Techniques 

In order to find the location of  the complex intersection point from the real- 
valued potential curves of  Julienne et al. [17], Preston et al. [71 fit the energy 
difference A V= V~-  V n to a Gaussian, 

A V= A exp( - Br + Cr2), (5) 

and solved for the value of  r which satisfies AE=O (see Eq.4). In this manner the 
intersection point may be written analytically as 

r c = [B___ (B 2 - 4C[ln(A/2) +- i cos-  1(1/3)])1/2]/2C. (6) 

Applying this procedure to our real-valued ab initio potential curves, and obtain- 
ing the parameters A, B, C with a generalized non-linear least squares fit 6, we 
found that the value of  r c was sensitive to the particular set of input points which 
were used, and furthermore did not converge to a limiting value. We used a set of  
real-valued input points, spaced evenly 0.5 bohr apart. Initially we considered 
input points in the range r = 8.5 to 10.0 bohr which yielded an intersection point of 
7.6271 +__ 3.1952i bohr. As we increased the number of  points the resultant inter- 
section point varied smoothly without converging. By comparison to the ab initio 
result, a "best"  Gaussian intersection point, (7.5795_+2.9795i bohr), was found 
by fitting from 6.0 to 10.0 bohr. Unfortunately, there was no criterion for choosing 
this particular set of  input points. 

Another method of  analytic continuation is through rational-fractions [25]. In 
the complex plane the intersection points are found by a simple search for the 
roots of  AE(r)= 0. For  these studies, we used up to twenty-eight real and nine 
complex-valued ab initio input points. We originally used input points from the 
range r = 4.0 to 10.0 bohr which yielded an intersection point of  7.4300 + 3.2041 i 
bohr. The inclusion of  more input points in the range 1.0 to 3.0 bohr shifted this 
only to 7.4348 _+ 3.1888i, which we consider as the converged limit. This method 
exhibits much more stability than the Gaussian procedure. The addition of  a 
single complex-valued input point did not  alter the intersection point very much, 
but the inclusion of all complex points yielded rc = 7.49426_+ 3.00887i bohr. 

We compared the effect of  these different fits in a simple dynamical calculation 
on the F H + system. The S-matrix elements were constructed from one dimensional 
phase integrals of  the form ~[21~(E-E+-[l+l/2]z/2~tr2)]l/Zdr which were 
evaluated on each energy curve from the classical turning point to r o (the real 
part of  re), and from ro in complex space to rc. These integrals were evaluated by 
a convergent Simpson's rule routine in which the quadrature points were provided 
by  a rational-fraction fit of  some selected set of input points. For  the integrals 
along the real axis, the entire set of  real points was used as input, and either E+ 
and E_ or (AE) 2 and Eav ~ were the functions analytically continued. For  the real- 
axis integrations, these two methods agreed to four significant figures. The 
integrals to the complex intersection point were handled in a variety of  ways. We 
calculated the G R H F  + SO potential curves at three additional complex points, 

6 The computer program GENNY was used, courtesy of Professor L. Friedrich, the University 
of Rochester. 
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Table 1~ Results of the dynamic calculations 

195 

r~ fitting procedure a IS(0)[ 2 [S(10)t 2 C" 
(bohr) for complex integrals 

exact b exact c 0.00629 0.00033 0.00018 4.1610 
exact b E+, E_ 0.00542 0.00030 0.00015 4.2337 
exact b (AE) 2, Ea~g 0.00557 0.00030 0,00016 4.2211 
7.5795 +2.9795i (AE) 2, E,~g 0.00619 0.00032 0.00017 4.1917 
7,4348 + 3.1888i (AE) 2, E,,g 0.00502 0.00030 0.00014 4.2816 

C is the imaginary part of the phase which is accumulated in propagating in complex space to the 
intersection point on the initial surface and returning to the real axis on the final surface, 

b 7.49426__+ 3.00887i. 
Ab initio points at 7.49426--t- c~3.00887i, c~=0, �88 �89 �88 l, were used as input for a rational fraction to 

evaluate the phase integrals in complex space. All other fitting procedures used only real input points. 

spaced evenly between ro and r c. The energies at these points as well as at r 0 and rc 
provided input to a rational-fraction which was used to evaluate the complex 
integrals. This procedure is :referred to as the "exact" semiclassical method. We 
also used fits of  only the real-valued input points and continued either E+ and E_ 
or (AE) z and Eavg to the ab initio intersection point, and these results were com- 
pared to each other and the exact result. The latter method was also used to 
evaluate the complex phase integrals to the intersection points determined by the 
Gaussian and rational-fraction fits. Employing Eqs.(2.7)-(2.14) of  Ref. 6 with the 
phase factor 6 = + re/4, the phase integrals were used to construct the S-matrix 
elements, S(I),  for each partial wave l, for Reaction (1). The cross section can be 
written 

7~ 
a = 21fiE + 2/3) ~ (2/+ 1)] S(l)[ z, (7) 

l=0 

where E is the energy in hartree, measured from the common asymptote of V~ 
and V n, and/~ is the reduced mass of  the F + H + system. The cross sections were 
evaluated at E =  0.002 hartree, and the sum over the partial waves was terminated 
at l =  15, where the turning point on the upper surface is greater than 10.0 bohr. 
The cutoff in the partial wave summation was applied consistently in all cases. 

The results of  these calculations are presented in Table 1. The first column 
lists the intersection point which was used in the calculation, and the second 
column indicates the functional forms used as input to generate quadrature points 
for the complex phase integrations. In this column, "exact" refers to the use of  the 
five complex-valued calculations between ro and r c as input to a rational-fraction. 
The other rational-fractions used only real input. The third column lists the cross 
sections, and the next two columns list the squares of the S-matrix elements for 
specific partial waves, namely l=  0 and 10. Finally, we compare the imaginary 
contribution to the phase from the integrals to and from the complex intersection 
point on the initial and final potential curves respectively. This quantity, labelled C, 
was calculated for the zeroth partial wave. 

Several things are clear from the Table. The analytic continuation of  the func- 
tions (AE)  z and Eavg, which preserves the branch point structure of  the potential 
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energy function,  is more  accurate than the cont inuat ion  o f  the funct ions E+ 
and E _ .  Fur thermore ,  more  error  is incurred by the misplacement o f  the inter- 
section point  than by the use o f  the rat ional-fract ion to generate quadra ture  points 
for  the integration. Thus  if one were to determine an ab initio intersection point  for 
a pair  o f  surfaces there is no  need to calculate a large number  o f  addit ional  com-  
plex-valued input  points  for  the integrations,  as these will not  greatly improve the 
accuracy  o f  the calculation. 

4. Summary 

We have calculated the energies o f  the 2z~+ and 2//states of  the H F  + system 
at a variety o f  real and complex values o f  the internuclear separation. Aided by a 
ra t ional-fract ion fit, an ab initio intersection point  for  the associated spin-orbit  
states was found  at r=7.49426_+3.00887i  bohr. A rat ional-fract ion fit based 
entirely on real input  points  yielded an intersection point  o f  r =  7.4348___ 3.1888i 
bohr  and was stable as we varied the number  o f  input  points. Cross sections cal- 
culated for  the electronic t ransi t ion in the F H  + system showed a s trong dependence 
on the posi t ion o f  the intersection point.  However,  the use o f  an analytic fit by 
rat ional-fract ion techniques to a set o f  real input points  int roduced only a small 
error  in the cross section. 

Finally, a l though the cross section for  the intersection point  determined by 
the Gauss ian  fit is in g o o d  agreement  with the exact semiclassical results, this 
intersection point  was chosen f rom a range o f  possible values. The intersection 
points  determined by different sets o f  input  points did not  converge to a limit as 
more  points  were added, unlike the rat ional-fract ion method.  Wi thou t  prior  
knowledge o f  the ab initio intersection point,  the Gaussian fitting procedure  would  
have been o f  little use. 

Acknowledgement is made to the National Science Foundation, the Air Force Office of Scientific 
Research (Contract F44620-74-C-0073), and the Donors of the Petroleum Research Fund, adminis- 
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